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Abstract

We consider the steady state equations for a compressible uid. Since we wish to solve for a range of

speeds we must consider the equations in conservation form. For transonic speeds these equations are of

mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then

march these equations in time. One then adds a time derivative of the density to the continuity equation, a

derivative of the momentum to the momentum equation and a derivative of the total energy to the energy

equation. This choice is dictated by the time consistent equations. However, since we are only interested

in the steady state this is not necessary. Thus we shall consider the possibilty of adding a time derivative

of the pressure to the continuity equation and similar modi�cations for the energy equation. This can then

be generalized to adding combinations of time derivatives to each equation since these vanish in the steady

state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to

the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations

for low speeds.
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i



Introduction

It is well known, that it is di�cult to solve the compressible equations for low Mach numbers. For an

explicit scheme this is easily seen by inspecting the time steps. For stability, the time step must be chosen

inversely proportional to the largest eigenvalue of the system which, for slow ows, is approximately the

speed of sound, c. However, other waves are convected at the uid speed, u , which is much slower. Hence,

these waves don't change very much over a time step. Thousands of time steps may be required to reach a

steady state. Should one try a multigrid acceleration one �nds that the same disparity in wave speeds slows

down the multigrid acceleration. With an implicit method an ADI factorization is generally used so that

one can easily invert the implicit factors. The use of ADI introduces factorization errors which again slows

down the convergence rate when there are wave speeds of very di�erent magnitudes [7] .

We consider systems of the form

wt + fx + gy = 0:

Our analysis will be based on the linearized equations so that the conservation form does not appear in the

analysis though it does appear in the �nal numerical approximation. This system is now replaced by

P�1wt + fx + gy = 0;

or in linearized form

P�1wt + Awx +Bwy = 0; (1)

with A and B constant matrices.

In order for this system to be equivalent to the original system, in the steady state, we demand that

P�1 have an inverse. This only need be true in the ow regime under consideration. We shall see later that

frequently P is singular at stagnation points and also along sonic lines. Thus, the �nal preconditioner will

be smoothed out in the vicinity of points where M=0 or M=1.

Assuming the steady state has a unique solution, it does not matter which system we march to a steady

state. We shall later see that for the �nite di�erence approximations the steady state solutions are not

necessarily the same and usually the preconditioned system leads to a better behaved steady state.

The Incompressible Limit

The time dependent two dimensional Euler equations can be written as

pt + upx + vpy + �a2(ux + vy) = 0

ut + uux + vuy +
px

�
= 0 (2)

vt + uvx + vvy +
py

�
= 0

St + uSx + vSy = 0

The form of this system is unchanged if we nondimensionalize the equations. From now on we shall

assume that u; v; p; � are nondimensional quantities where the dimensional variables are nondimensionalized

by u�; p�; ��. Following [4] we de�ne � =
u�
a�

= M� . If the uid is isentropic then

p =
�

�2
; a =

�
�1

2

�
(3)

Hence, as � goes to zero the speed of sound, a, goes to in�nity and so the �rst equation in (2) reduces to

ux + vy = 0.
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It was pointed out in ([10], [11]) that these equations can be symmetrized by using dp
�a

as the independent

variable rather than dp . Hence, we de�ne � by d� = dp
�a
. For isentropic ow both p and a are functions only

of the density and so using (3) this can be integrated explicitly. This gives � = �
�1

2

�1

2
�
. As the Mach number

goes to zero � tends to in�nity and therefore, Gustafsson and Stoor [4] subtract a constant and de�ne

� =
�
�1

2 � 1
�1
2
�

(4)

This amounts to specifying the constant in the integration of d� from dp. They then prove, using energy

methods, that

a�x !
@pincompressible

@x

Hence, � and all its derivatives behave as O(M ) as M ! 0. Since �! 1 and using the de�nition of d� this

is equivalent to

dpcompressible ! dpincompressible (5)

We now consider how to construct a matrix arti�cial viscosity that will enable us to reach the incom-

pressible limit. Consider

P�1wt + fx + gy = h [(Q1wx)x + (Q2wy)y ] (6)

We wish to �nd the dependence of P and Qi on the Mach number as M ! 0 so that we get the proper

convergence. We therefore consider the isentropic equations based on w = (�; u; v) see (4). This has the

symmetric form

P�1wt +

0
@ a11 a12 a13

a12 a22 a23
a11 a23 a33

1
Awx

+

0
@ b11 b12 b13

b12 b22 b23
b11 b23 b33

1
Awy = h [(Q1wx)x + (Q2wy)y]

As M ! 0; a12 and b13 = O(1=M ) while d� = O(M ) while all other quantities are bounded. Hence, the

leading terms in the �rst equation are all O(1=M ) while they are O(1) for the second and third equations.

Multiplying the �rst equation by M and taking the limit we get ux+ vy for the space derivatives on the left

hand side. Using d� = O(M ); du = O(1); dv = O(1) we see that a necessary condition for convergence as

M ! 0 is that P�1; Qi have the form

P�1;Q1;Q2�

0
@ O( 1

M2 ) O( 1
M
) O( 1

M
)

O( 1
M
) O(1) O(1)

O( 1
M
) O(1) O(1)

1
A (7)

The arti�cial viscosity matrices Qi are related to the preconditioner. Consider the one dimensional

equation

ut + Pfx � (jQjux)x

Let A = @f
@u
. Since we are updating Pf we should have Q = PA. However, this is not in conservation form

at the steady state. Instead we consider arti�cial viscosities of the form

P�1ut + fx � (P�1(jPAjux)x

or

ut + Pfx � P (P�1(jPAjux)x
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This would be equivalent to the original form if P were constant. Instead we have terms like PiP
�1
i+1=2

that appear.

We note that the conditions on the matrix (P�1jPDj)comp are not satis�ed by the non-preconditioned

Roe matrices. Furthermore, even reasonable preconditioners need not satisfy these conditions. Consider, for

example, the one dimensional system

P�1wt + Awx = h(Qwx)x

A reasonable choice is P�1 = jAj i.e. P = jA�1j. In this case all the wave speeds of PA are �1. Now

Q = P�1jPAj = jAj
��jAj�1A�� = jAj �0

@ O( 1
M
) O(1) O(1)

O(1) O( 1
M
) O(1)

O(1) O(1) O(1)

1
A ;

i.e. Q is the nonpreconditioned Roe matrix which does not have the desired property. We therefore conclude

that for an upwind di�erence scheme the Riemann solver should be based on the preconditioned system and

not the original scheme. In [3] plots are shown to illustrate the greatly improved accuracy for low Mach

number ows when the Riemann solver is based on the preconditioning. Characteristics in the boundary

conditions these should be based on the characteristics of the modi�ed system and not the physical system.

Preconditioning is even more important when using multigrid than with an explicit scheme. With the original

system the disparity of the eigenvalues greatly a�ects the smoothing rates of the slow components and so

slows down the multigrid method, [6].

We conclude from the above remarks that the steady state solution of the preconditioned system may

be di�erent from that of the physical system. Thus, on the �nite di�erence level the preconditioning can

improve the accuracy as well as the convergence rate.

Algorithm

In terms of the primitive variables the preconditioning we consider is:0
BBB@

a2

�2
0 0 0

�au
�2

1 0 0
�av
�2

0 1 0

0 0 0 1

1
CCCA
0
BB@

dp
�a

du

dv

dS

1
CCA
t

+

0
BB@

u a 0 0

a u 0 0

0 0 u 0

0 0 0 u

1
CCA
0
BB@

dp
�a

du

dv

dS

1
CCA
x

+

0
BB@

v 0 a 0

0 v 0 0

a 0 v 0

0 0 0 v

1
CCA
0
BB@

dp
�a

du

dv

dS

1
CCA
y

= 0

The nonpreconditioned case corresponds to �2 = a2; � = 0. Let q = u!1 + v!2, then the eigenvalues of PD

are given by

d0 = q (double)

d� =
q

2

�
(1 � �+ �2=a2)� (8)

s
(1� �+ �2=a2)2 + 4(!21 + !22 � q2=a2)

�2

q2

#
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For general curvilinear coordinates, in the "i" direction !1 = y�, !2 = �x�. The time step is bounded by
V OL
d+

.

Our ultimate goal is to have a compressible code that solves the incompressible equations when the input

Mach number is zero. So we wish to use variables that give us the same result as an incompressible code on

all levels of the algorithm, e.g. ux computation, boundary conditions,acceleration techniques, etc. Hence,

we choose as our basic variables

Wp =

0
BB@

p0

�u

�v

E0

1
CCA ; Q =

0
BB@

p0

�u

�v

H0

1
CCA

F =

0
BB@

�u

�u2 + p0

�uv

�H0u

1
CCA ; G =

0
BB@

�v

�uv

�v2 + p0

�H 0v

1
CCA ;

@Wp

@t
= Pp

�
@F

@x
+
@G

@y

�
:

where

p0 = p� p1 h1 =
a2

 � 1

E0 = cp�(T � T1)� (p� p1) +
�(u2 + v2)

2
= E + p1 � h1�

�H0 = E0 + p0 = E + p� h1�

We subtract the constants to keep the quantities in scale. Density is now calculated from the pressure and

total energy. Because the modi�ed energy E0 also contains the density we get a quadratic equation for

the density. Choosing the positive square root guarantees that the density is always positive. The residual

smoothing and multigrid are applied to p0 and E0 rather than � and E. Thus, we duplicate the treatment of

the variables in a pseudo-compressible incompressible code.

Pp = I+��

0
BBB@

1� 1
�

�u
G+h1

�v
G+h1

1
G+h1

�uB2
u2B2

G+h1

uvB2

G+h1

�uB2

G+h1

�vB2
uvB2

G+h1

v2B2

G+h1

�vB2

G+h1

�B4
uB4

G+h1

vB4

G+h1

�B4

G+h1

1
CCCA

where h = cpT = a2

�1
, G = u2+v2

2
, � =

(G+h1)�2

h
, In the appendix we derive this form of Pp.

B1 =
1

�2
�

1

( � 1)h
=

1

�2
�

1

a2

B2 = B1 +
�

�2

B4 = B1H
0 +

�(u2 + v2)

�2
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We choose �2 = min
�
max

�
�1(u

2 + v2); �2min

�
; a2

	
where �min should have the units of speed. The

choice of �min is discussed in the result section. In all cases � = min
h
1; �2

�1(u2+v2)

i
. We can evaluate this

e�ciently by de�ning S = � �
�
d�� ud(�u)+vd(�v)�dE

G+h1

�
= �2dp

(�1)h
. Then

dp0new = S

d(�u)new = d(�u)orig � B2uS

d(�v)new = d(�v)orig � B2vS

dE0

new = dEorig � B4S

These equations are given for the nondimensionalized variables. The nondimensionalization a�ects the

convergence. In some codes, p and � are �xed in the far �eld. This implies that the speed of sound, a, is

also bounded. As the Mach number goes to zero the pressure remains of order 1 while the velocities go to

zero. Alternatively, one can nondimensionalize so that the velocities are of order 1 in the far �eld and then

the pressure and speed of sound go to in�nity, unless one subtracts an appropriate constant,

The boundary conditions at the far �eld boundary, for subsonic ow, are based on the one dimensional

theory of characteristics in the direction normal to the boundary. The preconditioning changes the form of

these characteristic variables. In di�erential form they are given by

R1 = du�
1

2��2

�
u(1� ��

�2

c2
)

�

r
(u(1� �+

�2

c2
))2 + 4(1�

u2

c2
)�2

!
dp0

R2 = du�
1

2��2

�
u(1� ��

�2

c2
)

+

r
(u(1� �+

�2

c2
))2 + 4(1�

u2

c2
)�2

!
dp0

where u is the component of the velocity normal to the boundary. If we consider low Mach numbers then

we can approximate these by

R1 = du+
dp0

��
; R2 = du�

dp0

��

which is the same as for the incompressible case. Hence, at inow R1, v (tangential velocity) and S are

speci�ed while R2 is extrapolated from the interior. We then calculate u (normal velocity) and the pressure

from R1 and R2 and then the density and total energy. At outow the role of speci�ed and extrapolated

quantities is reversed. At solid boundaries the normal momentum equation is used which is not a�ected by

the preconditioning.

Computational Results

The solution is advanced by a explicit Runge-Kutta method ([5],[8]) with residual smoothing and multigrid

and no enthalpy damping. In all cases three levels of FMG multigrid were used with 50 Runge-Kutta cycles

on the coarser grids. Hence, all plots show the convergence for two sets of 50 cycles and then the convergence

on the �nest mesh. The plots are of the convergence rate of the residual of the continuity equation. For the

original code this was updated for the density while in the preconditioned code it is updated for the pressure.

Nevertheless, in the steady state the residual of the continuity equation should be the same except for the

change in the arti�cial viscosity between the two algorithms. All cases were run with a matrix viscosity.

We �rst present two calculations for inviscid ow about a NACA 0012. We use a 224 � 32 C mesh

and three levels of multigrid. The �rst calculation is for inow conditions M = 0:01; � = 1:25� . In this
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case we see that the residual asymptotes without the use of preconditioning and that the preconditioning

dramatically increases the rate of convergence. The use of the preconditioning adds only a few percent

to the total computational time. In the second case we consider the same geometry but with an inow

of M = 0:7; � = 1:25�. We have also done M = 0:8; � = 1:25� which results in a minor slowing of the

convergence rate. The preconditioned residual is the dotted line and the original code is the solid line.

Di�erent parameters for the time step and residual smoothing are needed with and without preconditioning.

For inviscid cases we can choose �min as zero while for the viscous cases �min = 0:4
p
u2
1
+ v2

1
. For the

transonic cases the lift and drag coe�cients are changed only minimally by the preconditioning.

We next consider viscous ow about a RAE2822 airfoil on a 320 � 64 C mesh and 5 levels of multigrid on

the �nest grid with M1 = 0:01; � = 2:79� using a Baldwin-Lomax turbulence model with Re = 6.5 million.

The residual history is presented in �gure 3. Again the standard code converges very slowly for these low

Mach numbers. In �gure 4 we present both the preconditioned residual (dashed line) and the original code

(solid line) for the same case but M1 = 0:73. For viscous cases we choose �min = 0:4. Again, for the

transonic cases the lift and drag are changed by about 2 percent by the preconditioning. For the very low

Mach numbers the lift and drag coe�cients never converged for the non-preconditioned algorithm and seem

to have signi�cant errors. The preconditioned code gives much better agrees for lift and drag for low Mach

numbers.

We conclude with a three dimensional case, inviscid ow about an ONERA wing. In �gure 5 we display

the convergence rate for the continuity equation (normalized by the initial residual) for Mach numbers .10,

.05 and .01. We see that the convergence rate is independent of the inow Mach number. In �gure 6 we

plot the lift coe�cient for the same case. We again see that the lift coe�cient is essentially independent

of the Mach number except for some slight compressibility e�ects. Without preconditioning there are large

variations in the lift for this set of Mach numbers.
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Appendix

To �nd Pp we begin with the preconditioner PS for the variables dWS = (dp
�a
; du; dv; dS)t, with dS =

dp� a2d�. We then transform to dWS = (dp; du; dv; dS)t by multiplying all elements in the �rst row of the

matrix by �a and every element in the �rst column by 1
�a
. This gives

P�1
S

=

0
BBB@

a2

�2
0 0 0

�au
�2

1 0 0
�av
�2

0 1 0

0 0 0 1

1
CCCA

PS =

0
BB@

�2

a2
0 0 0

��u
a

1 0 0
��v
a

0 1 0

0 0 0 1

1
CCA

We then transform to the conservation variables Wc = (�; �u; �v;E)t. This is given by dWc = T1dWS . Let

� =  � 1

T1 =

0
BB@

1
a2

0 0 � 1
a2

u
a2

� 0 � u
a2

v
a2

0 � � v
a2

H
a2

�u �v �M2

2

1
CCA

T1
�1 =

0
BB@

�G ��u ��v �

�u
�

1
�

0 0

�v
�

0 1
�

0

�G� a2 ��u ��v �

1
CCA

where G = u2+v2

2
and a is the speed of sound. This gives the preconditioner in conservation variables.

Let Q1 =
(�1)(�2�a2)

a4
, Q2 =

(�1)(�2�(1+�)a2)

a4
, R = �2

a2
� 1 + ( � 1)M2(

(�2�a2)

2a2
� �). Then in

conservation variables Pc = T1PST
�1
1

,

Pc =

0
BB@

1 +GQ1 �uQ1 �vQ1 Q1

uGQ2 1� u2Q2 �uvQ2 uQ2

vGQ2 �uvQ2 1� v2Q2 vQ2

GR �uR �vR 1 + R

1
CCA

We next change from wc = (�; �u; �; E) variables to w0c = (�; �u; �; E0) variables, E0 = E � �h1 + p1,

dW 0

c = T2dWc.

T2 =

0
BB@

1 0 0 1

0 1 0 0

0 0 1 0

�h1 0 0 1

1
CCA

P0c =

0
BB@

1 +GQ1 �uQ1 �vQ1 �Q1

uGQ2 1� u2Q2 �uvQ2 uQ2

vGQ2 �uvQ2 1� v2Q2 vQ2

RG �uR �vR 1 + R

1
CCA

Then P0c = T2(T1PST
�1
1

)T�1
2
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We �nally change only the time derivatives to the variables Wp by dWp = T3dW
0

c.

T3=

0
BB@

�(G+ h1) ��u ��v �

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA

T3
�1 =

0
BB@

1
�(G+h1)

�u
G+h1

�v
G+h1

1
G+h1

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA

To summarize, we begin with

P�1S
@WS

@t
+AS

@WS

@x
+BS

@WS

@y
= 0

and transform to

P�1c
@Wc

@t
+ Ac

@Wc

@x
+Bc

@Wc

@y
= 0

We then transform , in conservation form, to the prime variables where E is replaced by E0 = E � h1�.

Finally we then have that P�1p = P0c
�1
T�13 = T2T1PS

�1T�11 T�12 T�13 . orPp = T3P
0

c
�1

= T3T2T1PST
�1
1 T�12 .

Thus,

Pp=

0
BBB@

� �u�2

h
�v�2

h
�2

h

�u�B2 1+ u2�2B2

h
uv�2B2

h
�u�2B2

h

�v�B2
uv�2B2

h
1+ v2�2B2

h
�v�2B2

h

��B4
u�2B4

h
v�2B4

h
1� �2B4

h

1
CCCA

where all quantities were de�ned in the text.

We next show how to convert any preconditioner given in streamline coordinates and (dp
�a
; du; dv; dS)

coordinates to conservative variables in Cartesian (not streamwise) coordinates. We shall do this in two

dimensions but the extension to three dimensions is straightforward. Assume we are given a preconditioner

in streamline coordinates and (dp
�a
; du; dv; dS) coordinates PS given by

PS =

0
BB@

P11 P12 0 0

P21 P22 0 0

0 0 P33 0

0 0 0 P55

1
CCA

We de�ne rotation matrices U;U�1 to get P in Cartesian coordinates.

U =

0
BB@

1 0 0 0

0 cos� sin� 0

0 �sin� cos� 0

0 0 0 1

1
CCA

U�1 =

0
BB@

1 0 0 0

0 cos� �sin� 0

0 sin� cos� 0

0 0 0 1

1
CCA

Let q2 = u2 + v2. To get the streamwise direction we shall choose

cos� =
u

p
u2 + v2

sin� =
v

p
u2 + v2
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Then the preconditioner in Cartesian coordinates is given by Pcar = U�1PSU and

Pcar=

0
BBB@

P11 P12
u
q

P12
v
q

0

P21
u
q

P22
u2

q2
+P33

v2

q2
(P22�P33)

uv
q2

0

P21
v
q

(P22�P33)
uv
q2

P22
v2

q2
+P33

u2

q2
0

0 0 0 P55

1
CCCA

=

0
BB@

Q11 Q12 Q13 0

Q21 Q22 Q23 0

Q31 Q32 Q33 0

0 0 0 Q55

1
CCA

We next introduce conservative variables Wc as given in the appendix by the transformation T1. The

preconditioner for conservative variables is then given by Pc = T1PcarT
�1
1

We now de�ne the following quantities

Y1 = uQ21 + vQ31 +wQ41

Y2 = uQ22 + vQ32 +wQ42

Y3 = uQ23 + vQ33 +wQ43

Y4 = uQ24 + vQ34 +wQ44

Y5 = ( � 1)(Q55 � Q11)

G =
( � 1)q2

2
L = ( � 1)�

Z11 =
1

�a2

�
q2Y5

2
�
Y1

�

�
+ Q55

Z12 =
1

�a2
uY5 +

Q12

�

Z13 =
1

�a2
vY5 +

Q13

�

Z14 =
1

�a2
wY5 +

Q14

�

Z15 =
1

�a2
Y5

Z51 = HZ11 +GY1 � uY2 � vY3 � wY4

+Q55(
q2

2
�

a2

 � 1
)

Z52 = HZ12 � ( � 1)�uY1 + Y2 � uQ55

Z53 = HZ13 � ( � 1)�vY1 + Y3 � uQ55

Z54 = HZ14 � ( � 1)�wY1 + Y4 � uQ55

Z55 = HZ15 + ( � 1)�Q55
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Then

Pc =

0
B@

Z11 Z12
uZ11 + GQ21 � Y2 uZ12 � RuQ21 + Q22

vZ11 + GQ31 � Y3 vZ12 �RuQ31 + Q32

wZ11 + GQ41 � Y4 wZ12 � RuQ41 + Q42

Z51 Z52

Z13 Z14
uZ13 � RvQ21 + Q23 uZ14 � RwQ21 + Q24

vZ13 � RvQ31 + Q33 vZ14 � RwQ31 + Q34

wZ13 �RvQ41 + Q43 wZ14 �RwQ41 + Q44

Z53 Z54

Z15
uZ15 + RQ21

vZ15 + RQ31

wZ15 + RQ41

Z55

1
CA
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Figure 1: Convergence rate for inviscid ow about a NACA0012 with M1 = 0:01 and � = 1:25�
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Figure 2: Same as �gure 1 with M1 = 0:70 and � = 1:25�, dotted line is preconditioned scheme
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Figure 3: Convergence rate for viscous ow about a RAE2822 airfoil with M1 = 0:01 and � = 2:79� Solid

line is original algorithm and dashed line is the preconditioned scheme
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Figure 4: Convergence rate for viscous ow about a RAE2822 airfoil with M1 = 0:73 and � = 2:79�. Solid

line is original algorithm and dashed line is the preconditioned scheme
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Figure 5: Convergence rate for inviscid ow about ONERA wing, M1 = :10; :05; :01, � = 3:06�
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Figure 6: Lift coe�cient for inviscid ow about a ONERA wing.
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